Alstom’s Boiler Experience

2015 03 17
Gerhard Heinz
Agenda

• Our Group

• Thermal Power

• Our Thermal Service Offering focused on Boilers

• Examples for executed Boiler Projects

• Summary
Introduction Alstom
Alstom Group – Three Main Activities in Four Sectors

- Thermal Power: €8.8 bn
- Renewable Power: €1.8 bn
- Grid: €3.8 bn
- Transport: €5.9 bn

46,000 employees in 70 countries
19,000 employees in 70 countries
28,300 employees in 60 countries

Sales 2013/14: €20.3 bn
Order Intake 2013/14: €21.5 bn
Agenda

• Our Group

• **Thermal Power**

• Our Thermal Service Offering focused on Boilers

• Examples for executed Boiler Projects

• Summary
Thermal Power
Philippe Cochet
President

Gas
Steam
Nuclear
Power Automation & Controls
Thermal Services

Alstom Thermal Power Organisation
Introduction Alstom
Our successful Service model

Service Network

9 Service Network
- North America
- North Europe
- Asia
- South East Europe & N Africa
- Latin America
- South West Europe & Africa
- Central Europe & CIS
- Middle East & India
- Southern Africa Countries

Product Lines

7 Product Lines
- Gas Turbine OEM
- Gas Turbine OOEM
- Steam Turbine
- Generator
- Boiler
- AQCS
- Integrated Solutions

9 Areas
Maximise market share by plant
- Seamless relationship with customer at the Plant level
- Match between market and resources
- Development of local competencies

7 Product Lines
Fully leverage technology and fleet
- Seamless portfolio of products and solutions
- Specific capabilities, knowledge and expertise
- Competitive and efficient supply chain accessible globally

Trust – Team – Action / Success through collaboration!
Central Europe & CIS
TS – Area CE&CIS

- **520 GW** thermal installed base
- **471 m** people across the Area
- **>1000** Thermal Service employees across CE&CIS
Agenda

- Our Group
- Power Sector
- Our Thermal Service Offering focused on Boilers
- Examples for executed Boiler Projects
- Summary
Thermal Services
Solutions for the installed base

Fuels
- Coal
- Gas
- Oil
- Nuclear

Plants
- Fossil Steam
- Gas (CC/SC)
- Nuclear
- Industrial Power Gen

Equipment
- Rotating Equipment
 - GT
 - ST
 - Geno
- Boilers
 - Coal/Oil
 - HRSG
- AQCS
 - ESP
 - SCR
 - FF
- BoP
 - Motor
 - Pump
 - Pipes

Services
- Parts
- Reconditioning & repair
- Field service
- Advice & operational support
- Performance improvement
- Service contracts

A complete portfolio from maintenance to performance improvement
Increase competitiveness of the plant

Adapt the plant with small adaptations and upgrades including environmental footprint to comply with IED

- Reduce cost
- Increase revenue

Evolution of Technology

- With adaptations & upgrades
- Without upgrades

Merit order that decides the power plant dispatch
Introduction Alstom

Boiler Product & Services Offering – Overview

Product Offering

<table>
<thead>
<tr>
<th>Type of fuel</th>
<th>Engineered Solutions</th>
<th>Field/Technical Services</th>
<th>Balance of Boiler</th>
<th>Firing Systems</th>
<th>Pressure Parts</th>
<th>Mills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-bit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bituminous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil/Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass/waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRSG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Product and Services Offering for own and other OEM fleets with the aim of

- Reducing Cost of Electricity
- Increasing Flexibility and Reliability
- Lower Environmental Footprint
Alstom step approach
Focus: Improve plant’s dark spread

Step 1 – Uncover & Tune
- Burner Tune
- Monitoring & Diagnostics
- Engineering Review
- Control Loop Tune

Step 2 – Adaptations & Minor Upgrade
- Burner Upgrade
- Flame Stability Monitor
- Mill upgrade
 Output > or low load

Step 3 - Modify
- IED Emissions Performance
- Low Load operation
- Low Load improvement
- Turbine Retrofit
- District Heating
- NOx Emission Perform. HWR

Reduce cost with OPEX and short term measures

Warsaw 18/03/2015 – P 12
© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
About Fuels

A wide variety of fuels are used to generate electricity

<table>
<thead>
<tr>
<th>Gas</th>
<th>Coal</th>
<th>Oil</th>
<th>Biomass</th>
<th>TDF/RDF</th>
</tr>
</thead>
</table>

Each of these fuels have advantages and disadvantages.

The fuel „defines“ the technical concept
About Boiler Technologies

Boiler technologies are different and driven by fuel types. Alstom has ALL technologies:

- **Drum-type boilers**
 - Oil, Gas, BFG

- **Once-through boilers**
 - Bituminous coal, Lignite

- **Once-through boilers**
 - Brown Coal, Lignite

- **Circulating Fluidized Bed**
 - Bituminous coal, Lignite

Anthracite Wet Bottom
Firing Technology impacted by coal quality
From brown coal to anthracite

Firing technologies are different & driven by fuel types Alstom has
ALL firing technologies

Low NOx Wall Burners
- Bituminous Coal
- Antracite
- Lignite
- Biomass
- Oil / Gas

Low NOx tangential fixed or tilting Burners
- Bituminous Coal
- Oil / Gas

Low NOx tangential fixed Burners
- Lignite
Reduction of NOx emissions primary methods
Combustion / Burners RoBTaS

Optimization of the combustion process using CFD for each boiler and burner
Optimization measures for Hard Coal Performance upgrade on oOEM Mills

Coal Mill - the ‘traditional’ bottle neck of the unit equipment

Alstom offers oOEM upgrade solutions Mills

Extended Coal Range resulting in lower fuel costs
Optimization measures for Bituminous Coal
Capacity upgrade Mills & Primary Air System

- Faster Start-up
- Extended Fuel Range
- Faster Load Changes
- Extended Fuel Range
- Extended Fuel Range

Source: ROTAMILL GmbH

- Additional Air Fan
- Dynamic Classifier
- Duct Burner

Source: REBURNFLAM® r;
Pillard Feuerungen GmbH

Gas Supply
Station

Raw Coal
to Mill

Coal Mill

Mill upgrade
Output > or low load
Secondary NOx reduction
Cost efficient compliance with Emission Regulation

NOx Reduction

In-situ
- Low-NOx burner
- Low-NOx firing (OFA)

Post combustion
- SNCR
 - SNCR with Urea
 - SNCR with ammonia
- SCR
Agenda

- Our Group
- Power Sector
- Our Thermal Service Offering focused on Boilers
- Examples for executed Boiler Projects
- Summary
Example oOEM 370 MW, Belchatow 6 PL
LowNOx+Performance & output Increase

Integrated Boiler&Turbine Retrofits,
Performance Improvement
Environmental Compliance

Before Retrofit
- NOx content in flue gas: > 400 mg/mN3
- MW output: 370 MW
- Cycle efficiency: > 38%
- Feed water temp.: 255 °C
- Live steam/RH temp.: 540 °C / 540 °C

After Retrofit
- NOx content in flue gas: < 200 mg/mN3
- MW output: > 394 MW
- Cycle efficiency: > 41.3%
- Feed water temp.: 275 °C
- Live steam/RH temp.: 570 °C / 570

Saving of >400,000 t CO2/year
Examples oOEM 500 MW - Meirama - ES
Fuel Flexibility & Environmental Compliance

Coal to Coal - Fuel Switch
Lignite to Hard Coal
Low NOx, SO2 modification

Nominal output MW 550
Unit commissioned - 1980
SH/RH steam temp. °C 540/540
SH steam press. Bar 182,5
OEM Hitachi

Before Modification
- NOx : >500 mg/Nm3;
- Boiler Efficiency : < 90% ;
- SO2 : > 3.000 mg/Nm3;

Achieved (guaranteed) performances
- NOx : 223 mg/Nm3 (500);
- Boiler Effic. : 93,7 % (93,2%);
- SO2 : <400 mg/Nm3 (400);

Before
- NOx : >500 mg/Nm3;
- Boiler Efficiency : < 90% ;
- SO2 : > 3.000 mg/Nm3;

After
- NOx : 223 mg/Nm3
- Boiler Efficiency : 93,7 %
- SO2 : <400 mg/Nm3

Improvement Boiler η +4%, Saving ~ 25% CO₂ Emissions

Fuel - before after
LCV MJ/kg 8 20,9-25,5
Moisture % 50,6 7,2-24,5
Ash % 26,9 0,9-13,7
Sulphur % 1,3 0,07-0,38
Flue Gas kg/s 933 647
Examples oOEM 2x450 MW - Schkopau - DE
Fuel Flexibility

Before

Reduced LCV
11-12 MJ/kg to
9,5 -10,5 MJ/kg

After

- Cut Economizer
- Re-design
- Resuction duct heads
- New PF Burner
- Increased diameter of DGS Beater Wheel, Modification Cuppling
- Modification FD fan &
- Elimination of FGR

Coal to Coal - Fuel Switch
Lignite modernization to changed LCV, Low NOx
Examples oOEM 2x150 MW - UA
Modernization Zmijev 8A & 8B

Main characteristics
• 2 x 475 t/h Russian (Taganrog) once through boilers, supercritical, wet bottom

Boiler scope of supply
• Boiler Rehabilitation
• New furnace and burners
• Ash handling equipment, supervision of erection and commissioning

Performances
• combustion efficiency 97.5%
• combustion capacity 467 MWth
• load range without support 70-100%
Examples oOEM 2x150 MW - UA
Modernization Zmijev 8A & 8B

Pressure Part and Firing Modification
Example OEM 750 MW – Bexbach, DE
Ultra Low NOx Rehabilitation 1998

Targets
Reduce NOx emissions
Decrease power generation costs
Increase boiler efficiency

Steam Parameter
SH 225 bar, 535°C, 625 kg/s (2,250 t/h)
RH 40 bar, 535°C, 573 kg/s (2,063 t/h)
Bituminous Coal (high volatiles)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Operating characteristics before retrofit</th>
<th>Operating characteristics after retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx downstream firing</td>
<td>mg/m³ s.t.p. (6 % O₂ dry)</td>
<td>850</td>
<td>350</td>
</tr>
<tr>
<td>CO-emission</td>
<td>mg/m³ s.t.p. (6 % O₂ dry)</td>
<td>< 10</td>
<td>100</td>
</tr>
<tr>
<td>Combustibles in fly ash</td>
<td>%</td>
<td>approx. 1</td>
<td>< 3</td>
</tr>
<tr>
<td>SCR Ammonia consumption</td>
<td>kg/h</td>
<td>600</td>
<td>275</td>
</tr>
</tbody>
</table>

Targets
- Reduce NOx emissions
- Decrease power generation costs
- Increase boiler efficiency

Example OEM 750 MW – Bexbach, DE
Ultra Low NOx Rehabilitation 1998

Steam Parameter
SH 225 bar, 535°C, 625 kg/s (2,250 t/h)
RH 40 bar, 535°C, 573 kg/s (2,063 t/h)
Bituminous Coal (high volatiles)

Before After

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Operating characteristics before retrofit</th>
<th>Operating characteristics after retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx downstream firing</td>
<td>mg/m³ s.t.p. (6 % O₂ dry)</td>
<td>850</td>
<td>350</td>
</tr>
<tr>
<td>CO-emission</td>
<td>mg/m³ s.t.p. (6 % O₂ dry)</td>
<td>< 10</td>
<td>100</td>
</tr>
<tr>
<td>Combustibles in fly ash</td>
<td>%</td>
<td>approx. 1</td>
<td>< 3</td>
</tr>
<tr>
<td>SCR Ammonia consumption</td>
<td>kg/h</td>
<td>600</td>
<td>275</td>
</tr>
</tbody>
</table>
Examples oOEM 4x230 t/h - Hard Coal, PL
Primary NOx reduction with SNCR

Optimization of the combustion process using CFD for each boiler and burner is possible to be combined with USNCR

- Secondary (SNCR/USNCR)
- Primary LowNOx firing system (≤ 350mg/m³i.N.)
Examples oOEM 50 MW - AT
Fuel conversion Sappi Gratkorn

- Main characteristics
 - OEM AE&E (WAGNER BIRO)
 - Capacity: 165 t/h; 120 bar; 520°C

- Scope of supply
 - Conversion from brown coal to hard coal + sludge (up to 20 t/h with LCV <2MJ/kg)
 - Improvement of cyclone efficiency
 - Replacement of a wall superheater by an in furnace double Omega exchanger.

- Achieved (guaranteed) performances
 - NOx (NG): < 200 mg /Nm3 (6% O2a)
 - Furnace outlet temperature < 900°C

Coal to Coal - Fuel Switch
Lignite to Hard Coal
Low NOx, SO2 modification
Examples oOEM 100 MW - Lubljana, SL
Conversion to Biomass Co-combustion #3

Hitachi Boiler
Unit 3, 1981

Dampfleistung 270 t/h
Heißdampf-Austritt-Temperatur 535°C
Heißdampf-Austritt-Überdruck 94 bar
Hochstzul.-Betriebsüberdruck 115 bar
Trommel-Überdruck 107 bar
Speisewasser-Temperatur 225°C
Rauchgas-Temp. Kaminaugang 160°C

Kessel-Herstell-Nr. 12 181
Überzüge-Herstell-Nr. 7 413
Herstellung 1981

Up to 30% Biomass co-firing by travelling grate with spout air feeding into the boiler hopper

Main fuel: Indonesian Lignite
Bio Fuels: crushed Biomass with 20 - 45% Moisture

Fuel Switch Coal to Coal/Biomass
Low CO2 modification
Examples OEM 50 MW - Sandreuth, DE
Conversion from Hard Coal to NG

Scope of supply:
• NG burners and supply lines
• Ducts including gas recirculation
• Heat exchanger
• Pressure parts modifications

Main characteristics:
• ALSTOM boiler
• Natural Gas front firing (4 burners)
• MMC: 135 t/h ; 535 °C

Results and Outcome:
• Achieved (guaranteed) performances
 • NOx (NG) : 90 mg/Nm³ 3 % O₂ dry (100)
 • NOx (FO) : 140 mg/Nm³ 3 % O₂ dry (150)
 • CO (NG) : 50 mg/Nm³ 3 % O₂ dry (100)
 • CO (FO) :70 mg/Nm³ 3 % O₂ dry (170)

Ultra low emissions
• Our Group

• Power Sector

• Our Thermal Service Offering focused on Boilers

• Examples for executed Boiler Projects

• Summary
Summary

Increase Profitability by Adaptations & Upgrade Solutions

Alstom offering
to adapt existing Power and Industrial Plants
to the changed market conditions

- **REDUCE PRODUCTION COST**
 - Combine increased reliability with fuel cost reduction & rapid ROI

- **REDUCE EMISSION**
 - Comply to emission limits also at load operations

ADAPTATIONS & MINOR UPGRADES
- OPEX
- Fast ROI
- During planned outage

... and discover more with Alstom BOILER Technology