

CO₂ Capture and Storage Technology Status

John Gale
IEA Greenhouse Gas R&D Programme

Open Hearing on Carbon Capture and Storage
European Parliament
7th March 2006.

Introduction

- Briefly discuss the IEA Greenhouse Gas R&D Programme
- Outline role in reducing global CO₂ emissions
- Technology Status
 - International Acceptance
 - Demonstration activities currently underway worldwide
 - New developments
 - Costs
- Barriers to implementation

IEA Greenhouse Gas R&D Programme

- A collaborative research programme which started in 1991.
- Its main role is to evaluate technologies that can reduce greenhouse gas emissions.
- Aim is to:

Provide our members with informed information on the role that technology can play in reducing greenhouse gas emissions

Global CO₂ Emissions

Source: IEA World Energy Outlook 2004

Geological Storage Options

Unminable Coal Seams
30 Gt CO₂
Able to store <2 Years of 2030

Able to store <2 Years of 2030 Emissions

Depleted Oil & Gas Fields 930 Gt CO₂

Able to Store 50 Years of 2030 Emissions

Deep Saline Aquifers 400-10 000 Gt CO₂ Able to store 20 - 530 Years of 2030 Emissions

Power Station with CO2 Capture Unminable Depleted Oil or Gas Reservoirs Deep Saline

Note: CO₂ Storage capacity at cost of 20 US \$ per tonne of CO₂

Role for CCS

- Capable of large-scale reductions in CO₂ emissions in the next 20-50 years
 - Without need for major energy infrastructure changes
- CCS should be considered as part of a portfolio of mitigation options
 - Energy efficiency;fuel switching;renewable energy; nuclear power

International Acceptance

- The main international frameworks covering CCS are:
 - The Law of the Sea (UNCLOS)
 - London Convention
 - OSPAR Convention
 - Climate Change Framework
 - Kyoto Protocol

International Acceptance

- Recent developments
 - IPCC Special Report on CCS accepted at IPCC Plenary in September 2006
 - CCS accepted as a mitigation option under Kyoto Protocol in November 2006 at MOP1
 - Committee reviewing issues related to safety
 - London Convention
 - Amendment submitted by Norway in January 2006 to allow CCS in sub sea structures
 - Discussed in April 2006

CCS Demonstration Projects

Monitored CO₂ Stored Underground

Recently Announced Demonstration Activity

- Integrated system demonstrations in power sector:
 - USA FutureGen
 - Coal fired IGCC, hydrogen/power & CCS)
 - Europe HypoGen>Dynamis
 - Coal fired IGCC or PF, hydrogen/power & CCS
 - Canada Saskatchewan Power
 - Lignite fired PF+CCS
 - Australia Stanwell Corporation
 - Coal fired IGCC, Power & CCS
 - China EU nZETS project
 - Clean coal plant and CCS

Recent Announced Demonstration Activity

- Integrated system demonstrations planned in power/oil and gas sector:
 - DF1 Miller Field/Peterhead power station in Scotland
 - Natural gas plant with power/hydrogen production and CO2-EOR
 - DF2 California, USA
 - Pet Coke plant with power/hydrogen production and CO2-EOR

Cost of Capture and Storage

Electricity cost, US c/kWh

CO₂ Capture Cost Reductions

- Costs of new technologies decrease
- "Learning by doing"
 - Incremental improvements in existing technologies
 - Capture costs predicted to decrease by 15-40%,
 - By analogy with other process technologies
- Major technology innovation
 - R&D is being carried out on new capture technologies
 - Further major cost reductions may be achieved

Summary (1)

- Globally CCS can with other measures make a significant impact on reducing CO2 emissions
- Use existing energy supply infrastructure
- International acceptance is now close
 - CO2-EOR was not an issue anyway
 - Removes a major barrier to implementation
- Technology is mature in certain sectors
 - Several large demonstration projects already in oil and gas sector
 - Development of existing oil and gas technology

Summary (2)

- Power sector projects are now appearing
 - By 2020 we should see several large integrated demonstration projects in power sector
 - But we have some work to do yet
- Costs are high but comparable with other mitigation technologies
 - Capture costs will reduce 15-40% with replication
 - Capture is highest single cost component

Barriers to Implementation

- The issue of permanence
 - We must be able to demonstrate that the injected CO₂ does not seep back out of the reservoir
 - Health and Safety/global environment
- The absence of regulations
 - No international standards
 - National are being developed in many countries
 - We need to move more rapidly
- Market creation
 - Fiscal or financial incentives needed

Final Thoughts

Europe

- Sources and storage opportunities don't overlie each other
- But can connect 95% of sources
- Emissions of 30.7Gt over 20 years
- Need 150 000 km of pipelines going across national boundaries

Thank You ANY QUESTIONS?